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Today’s Lecture

- Introduction to High-Dimensional Probability
- Markov Inequality

« Chebyshev Inequality
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High-Dimensional Probability

HDP focuses on probabilistic models involving either many random variables or variables that take values in
high-dimensional spaces, analyzed in a quantitative and non-asymptotic manner

Theorem (Weak law of large numbers (WLLN)).

Let X be a real random variable with expectation [E[X] = m. Consider an iid sequence {X;};en Of
copies of X, and let

for n € N

II
S|
M=

i=1
Then, for any t > 0, we have the limit

Pr||X, —m|>=t] >0 as n-

Why WLLN is not useful?
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High-Dimensional Probability

HDP focuses on probabilistic models involving either many random variables or variables that take values in
high-dimensional spaces, analyzed in a quantitative and non-asymptotic manner

Flip n unbiased coins

Let X, ..., X;, be the outcomes (i.e., X; := 1 for “head” and X; := 0 for “tail”)
By the linearity of expectation, IE[Yn] = %(IE[Xl] + .-+ E[X,]) = %

WLLNﬁPr”Yn—%‘ 2t]—>0 as n > o

However, we only have a finite number of coins (say, 100). What is the probability of getting 60 heads?
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High-Dimensional Probability

Phenomena in HDP
« Concentration

- Suprema

- Universality

« Phase transition
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High-Dimensional Probability

Concentration
Consider a collection of random variables (X4, ..., X;,) and a measurable function f
Define a random variable Z := f (X, ..., X;,)

Concentration inequalities take the following forms:
Pr[|Z — median(Z)| > t] <??? or Pr[|Z-E[Z]|>t] <???

T T~
! S, | >

E[X] E[X]

Strong concentration Weak concentration
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High-Dimensional Probability

Suprema

For a (possibly uncountable) index set T, consider a real-valued random process X := (X; : t € T)
Think about X as a map from each point t € T to a random variable X;

Define a random variable Z := sup{X; : t € T}

We can apply concentration inequalities to Z, but what is E[Z]?

For a random matrix X € R™*"™, its spectral norm is
IX]| = sup{u'Xv : |lull, =1,[[vll, = 1}

T=8""1x8"1 andfort = (u,v) € T the random variable X; := u' Xv

E[lIX|I] = E[suptX, : t € T}]
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High-Dimensional Probability

Universality / Invariance principle

If X1, ..., X,, are independent (or weakly dependent) random variables, then the expectation
E[f(Xq, ..., X,)] is “insensitive” to the distribution of X, ..., X,, when the function f is “sufficiently
smooth.

Let X, X5, ... be a sequence of iid random variables with E[X;] = u and Var[X;] = 2. Then
Vin(X, —u) - N(0,6%) as n - o
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High-Dimensional Probability

Universality / Invariance principle

If X1, ..., X,, are independent (or weakly dependent) random variables, then the expectation

E[f(Xq, ..., X,)] is “insensitive” to the distribution of X, ..., X,, when the function f is “sufficiently
smooth.

Let X € R™™ be a symmetric matrix whose entries X;; are independent random variables with IE[XL-J-] =
0, E[X?| = 1,and E[|X};|] < Cfori =

The (averaged) histogram of the eigenvalues of the matrix 7n looks, when n is large, like a semicircle

n
1 1
=1
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High-Dimensional Probability

Phase transition

The behavior of probabilistic models tends to undergo abrupt changes when the model parameters cross
some threshold value.

Let X4, ..., X,, be iid Bernoulli random variables, thatis, Pr[X; = 1] = pandPr[X; =0 =1—-»p
Let f:{0,1}" — {0,1} be a Boolean function

For a large family of f, the expectation E, [f (X4, ..., X;,)] exhibits a sharp transition as p changes
Concretely, you can view f as a voting rule that takes n votes and outputs the winner

- Majority: f(xl, ...,xn) — 1x1+...+xn2n/2
- Dictatorship: f(xq, ..., x,) = x;

> Tribes: f(xq, .o, xp) = (g A" Axy) V(Xpir A AXoy) VoV (e A A Xy)
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High-Dimensional Probability

Phase transition

January 22,2026
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Today’s Lecture

- Introduction to High-Dimensional Probability
- Markov Inequality

« Chebyshev Inequality
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Markov Inequality

Let X be a non-negative random variable. Then, we have

Pr[X > t] < y

Proof.
Let u(x) be the probability density function of X

The expectation E[X] can be expressed as:

E[X] = jooox,u(x)dx = jooo (joxu(x)dy> dx = JOOO (jyoo,u(x)dx> dy = fOOOPr[X > y|dy

Pr[X > y]is a non-increasing function of y, which implies that

E[X] = j “PrX = yldy > j Prix = yldy > j PrlX > d]dy = tPrlX > ]
0 0

0
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Markov Inequality

Let X be a non-negative random variable. Then, we have

E[X]

PrlX > t] < —

Proof (discrete case).

t

Let’s prove it by contradiction. Suppose 3t > 0 such that Pr[X > t] > E[X]/t

E[X] =ZiPr[X=i] =2iPr

i€Q i<t
ZZiPr[X= i > ZtPr
>t >t
> E[X]

We get E[X] > E[X], contradiction!
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Markov Inequality

Pigeon-hole principle / Averaging argument

Suppose (R, C) is a joint distribution over [m] X [n].
Intuitively, think of a matrix with m-rows and n-columns

Let £ c [m] X [n] be a subset of cells such that Pr[(R,C) € £] > €

Let X, :== Pr[(R,C) € E|R = 1]

Then, for € € (0,1), @ € [0, €], we have Pr[X; > a] > —

1-«
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Markov Inequality

Pigeon-hole principle / Averaging argument

Suppose (R, C) is a joint distribution over [m] X [n].
Intuitively, think of a matrix with m-rows and n-columns

Let £ c [m] X [n] be a subset of cells such that Pr[(R,C) € £] > €

Let X, :== Pr[(R,C) € E|R = 1]

Then, for € € (0,1), @ € [0, €], we have Pr[X; > a] > —

1-«
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Markov Inequality

Xy
Pigeon-hole principle / Averaging argument 1/3
Suppose (R, C) is ajoint distribution over [m] X [n]. 1/3
Intuitively, think of a matrix with m-rows and n-columns 1/3
Let £ c [m] X [n] be a subset of cells such that Pr[(R,C) € €] > € 1/3
1/3
Let X, :== Pr[(R,C) € E|R = 1] /
1/3
Then, for € € (0,1), a € [0, €], we have Pr[X; = a] > %

Proof.
We know that E[Xr] = eand Xz <1

By the law of total expectation, we have
E[Xx] = E[Xq| Xz > a] - Pr[X; > al + E[Xg|Xg < al - (1 - PrlXp 2 a]) > ¢

1

<1 <a
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Markov Inequality

Pigeon-hole principle / Averaging argument

Suppose (R, C) is a joint distribution over [m] X [n].
Intuitively, think of a matrix with m-rows and n-columns

Let £ c [m] X [n] be a subset of cells such that Pr[(R,C) € €] > €
Let X, := Pr[(R,C) € E|R =]

Then, for € € (0,1), @ € [0, €], we have Pr[X; > a] > —

1-«

Proof.

We get that
PriXgz = a]l + a(1 — Pr[Xg = a]) > €

€E—

PrXp = af >
rlXg = af 1— o
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Markov Inequality

First-moment principle

Let X be a random variable with E[X] = u. Then, we have
Pr[X = u] >0, PriIX <u] >0

It is a special case of the pigeon-hole principle (in the previous slide) witha =€ = u
Proof.
We’ll prove by contradiction. Suppose Pr[X > u] = 0

Then, the expectation becomes:

,u=IE[X]=ZxPr[X=x]=ZxPr <,uZPr

X x<u x<u

It implies u < u, which is a contradiction
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Derandomization

- To what extent is randomness essential for efficient algorithms?
?
- BPP=P
Basic idea of derandomization
Every randomized algorithm can be expressed as a deterministic function A(x, 1)
x € {0,1}" is the input and r € {0,1}™ is the random string
BPP guarantees that, for any x € {0,1}",

P LAl ) = f(0] 2 2/3

. 2 . ,
i.e. atleast g—fractlon of r’s are

“good” for x

If there is a deterministic algorithm B(x) that outputs “good” random string r

Then A(x, B(x)) is a deterministic algorithm that computes f
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Derandomization

Max-3SAT:
(x; VX, Vx3z) A(xy Vx,Vx;)A--isa3-CNF formula with n variables and m clauses of size 3
Find an assignment of x4, ..., x,, € {0,1} to satisfy the most clauses
Randomized algorithm
Set each x; = 0 or 1 with probability 1/2 independently
Let Z; € {0,1} indicate whether the i-th clause is satisfied
E[Z;] = 7/8 (check by yourself)

Let Z == Z, + --- + Z,,, be the total number of satisfied clauses

By the linearity of expectation, E[Z] = E[Z,] + --- + E[Z,,,] = gm
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Derandomization

Max-3SAT:
(x; VX, Vx3z) A(xy Vx,Vx;)A--isa3-CNF formula with n variables and m clauses of size 3
Find an assignment of x4, ..., x,, € {0,1} to satisfy the most clauses
Derandomization via conditional expectation
By the first moment principle, E[Z] = (7/8)m implies that Pr[Z = (7/8)m] > 0
Our goal is to find such an assignment

By the law of total expectation,

>

N =
ool BN

E[Z] = E[Z|x, = 0] -%+ E[Z]x, = 1] -

Either E[Z]|x; = 0] = (7/8)mor E[Z|x, = 1] = (7/8)m. Then, we can fix the value of x;

How to calculate the conditional expectation?
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Derandomization

Max-3SAT:

« (xyVxy,Vx3) A(x, VX,V x;)A--is a3-CNF formula with n variables and m clauses of size 3
- Find an assignment of x4, ..., x,, € {0,1} to satisfy the most clauses

Derandomization via conditional expectation

- We can iterate this process to find the values of x,, x5, ..., X,

«  During this process, we always maintain that

E[Z|x; = a{,X3 = Ay, e, X, = Qg ] = =M

ool BN

- Thus, after the final round, we obtain an assignment can satisfy at least (7/8)m clauses
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Probabilistic methods

One of the most powerful method in combinatorics to show the existence of some object
without giving an explicit construction

1. Construct a probability space over the possible objects and their attributes (e.g.
graphs)

2. Show that Pr[sampled object having the properties| > 0

Fourth Edition

THE
PROBABILISTIC
METHOD

NOGA ALON « JOEL H. SPENCER
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Today’s Lecture

- Introduction to High-Dimensional Probability
- Markov Inequality

« Chebyshev Inequality
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Chebyshev Inequality

Variance

Let X be areal random variable. The variance of X is
Var[X] :== E[(X — E[X])?] = E[X?] — E[X]? >0

Chebyshev Inequality

Let X be a real random variable. Then

Var|[X]
tZ

Pr(|X — E[X]| = t] < Vt>0

Equivalently, if Var[X] = 2, then
Pr[|X — E[X]| = to] < min{t~?, 1}

Januar y 22,2026 26



Chebyshev Inequality

Let X be areal random variable. Then

Var|X]

Prlx — E[X]| = ] < —

Vt>0

Proof.
Pr[|X — E[X]| = t] = Pr[|X — E[X]|? > t?]
Apply Markov inequality to | X — E[X]|?:

Pri|X — E[X]|% = t?] <
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Chebyshev Inequality

Let X be a real random variable. Then
Var|X]
t2

Pr[|X — E[X]| = t] < Vi>0

How to estimate the variance?
Range bound

Tensorization of variance
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Chebyshev Inequality

Range bound

Let X be a random variable whose support is contained in [a, b]. Then

Var[X] < %(b —a)?

Proof.

Variational formulation (check by yourself): for any random variable X,
Var[X] = infE[(X — 7)?]
T
And the infimum is attained at T = E[X]

Sett=(b+a)/2.Thenwehave | X—1| < (b—a)/2
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Chebyshev Inequality

Range bound

Let X be a random variable whose support is contained in [a, b]. Then

Var[X] < %(b —a)?

Let X4, ..., X,, be independent random variables such that supp(X;) < [a;, b;]
letZ = X, + -+ X,,

By the independence, we know that

n n
1
Var[Z] = ZVar[Xl-] < ZZ (b; — a;)? = 42 = —||c||2
i=1 i=1
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Chebyshev Inequality

Range bound

Let X be a random variable whose support is contained in [a, b]. Then

Var[X] < %(b —a)?

Let X4, ..., X,, be independent random variables such that supp(X;) < [a;, b;]
letZ = X, + -+ X,,

On the other hand, it is easy to see that supp(Z) c [X~, a;, Y- b;]

(Z i‘”f%(i%) = - lell

=1 i=1
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Chebyshev Inequality

Range bound

Let X be a random variable whose support is contained in [a, b]. Then

Var[X] < %(b —a)?

Let X4, ..., X,, be independent random variables such that supp(X;) < [a;, b;]
letZ = X, + -+ X,,

1
Var[Z] < 7 min{llell3, ll¢ll2}
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Chebyshev Inequality

EIICIIz
I I | | I |
I I I I I |
EZ EZ
range(Z) = llcll, range(Z) = |lcll (Source: Joel A. Tropp)

“A random variable that depends (in a ‘smooth’ way) on the influence of many independent
variables (but not too much on any of them) is essentially constant.”

Michel Talagrand 96
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Chebyshev Inequality

Tensorization

The motivation comes from the additivity law of variance for independent sum:
Var|Z] = Var[X,] + :-- + Var[X,,]

What if Z = f(X, ..., X;,) a general function?
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Chebyshev Inequality

Tensorization

We define the coordinatewise expectation: foranyi € [n],

E;[Z] == E[Z|Xq, ..., Xi—1, Xis1) oo X
Note that [E;[Z] is a random variable depending on {Xj - i}

E;|Z] = E;[Z](Xy, oo, Xi— 1, Xiv 1) s X))
We can also define the coordinatewise variance: for anyi € [n],

Var;[Z] = E;[(Z — E;[Z]D?] = E;[Z?] — E;[Z]?

Theorem. Suppose X, ..., X,, are independent random variables. Let Z = f(Xy, ..., X;,).

i Var;|Z]

Var[Z] < E
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Chebyshev Inequality

Tensorization

Theorem. Suppose X, ..., X,, are independent random variables. Let Z = f (X4, ..., X;,).

z Var
=

You can check that when Z = X; + --- + X,,, Var;[Z] = Var[X;]. The tensorization inequality for
variances holds with equality.

Var|Z

The proof uses Doob’s martingale (we’ll discuss it later in this course)

E|Var,[f(Xy, ..., Xn z zz zVar FQq, s Xi—1, Xi) Xjs1y oo X)) HPr[X —x]]

Xi—1 Xi+1 J#i
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Chebyshev Inequality

Tensorization

Theorem. Suppose X, ..., X,, are independent random variables. Let Z = f (X4, ..., X;,).
n

z Var,[Z]
i=1

Corollary. ForZ = f(X4, ..., X,,), define the i-th discrete partial derivative as:

Var[Z] < E

(D;if)(Xqy ey X, X1y ey X)) = SUP  f(Xq, e, Xjo1, Z, X1y weey X))
ze€supp(X;)
— ZESI}II)lII):(Xi) f(xl, ey Xi=10Z, Xji41) ooey Xn)
Then, Proof.
n « Range bound for Var;[Z]:
1 5 1
Var[Z] < Zz E[(D;f)*] Var;[2] < 7 (Dif)?
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Chebyshev Inequality

Tensorization

Corollary. For Z = f(Xy, ..., X,,), define the i-th discrete partial derivative as:

(D;if)(Xq, s X1, X1y er X)) = SUP  f(Xq, ey Xj_1, Z, X1y oo

zesupp(X;)
— inf  f(xq, e, X241, Z, Xjgq)y ooer X))

zesupp(X;)
n
Z [(D,)?]
i=1

Can we further generalize it to dependent random variables?

Then,

Var|Z

-[>-|+—x

Related to the Poincaré inequality:

Var[f (X)] < Cpy - E[IIVF(X)5]
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