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• Introduction to High-Dimensional Probability

• Markov Inequality

• Chebyshev Inequality
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HDP focuses on probabilistic models involving either many random variables or variables that take values in 

high-dimensional spaces, analyzed in a quantitative and non-asymptotic manner

Theorem (Weak law of large numbers (WLLN)).

Let 𝑋 be a real random variable with expectation 𝔼 𝑋 = 𝑚. Consider an iid sequence 𝑋𝑖 𝑖∈ℕ of 

copies of 𝑋, and let

𝑋𝑛 ≔
1

𝑛
෍

𝑖=1

𝑛

𝑋𝑖 for 𝑛 ∈ ℕ

Then, for any 𝑡 > 0, we have the limit

Pr 𝑋𝑛 −𝑚 ≥ 𝑡 → 0 as 𝑛 → ∞

Why WLLN is not useful?
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HDP focuses on probabilistic models involving either many random variables or variables that take values in 

high-dimensional spaces, analyzed in a quantitative and non-asymptotic manner

Example:

• Flip 𝑛 unbiased coins

• Let 𝑋1, … , 𝑋𝑛 be the outcomes (i.e., 𝑋𝑖 ≔ 1 for “head” and 𝑋𝑖 ≔ 0 for “tail”)

• By the linearity of expectation, 𝔼 𝑋𝑛 =
1

𝑛
𝔼 𝑋1 +⋯+ 𝔼 𝑋𝑛 =

1

2

• WLLN ⟹ Pr 𝑋𝑛 −
1

2
≥ 𝑡 → 0 as 𝑛 → ∞

• However, we only have a finite number of coins (say, 100). What is the probability of getting 60 heads?
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Phenomena in HDP

• Concentration

• Suprema

• Universality

• Phase transition
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Concentration

• Consider a collection of random variables 𝑋1, … , 𝑋𝑛 and a measurable function 𝑓

• Define a random variable 𝑍 ≔ 𝑓 𝑋1, … , 𝑋𝑛

• Concentration inequalities take the following forms:

Pr 𝑍 −median 𝑍 ≥ 𝑡 ≤? ? ? or Pr 𝑍 − 𝔼 𝑍 ≥ 𝑡 ≤? ? ?

Strong concentration Weak concentration

𝔼 𝑋 𝔼 𝑋
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Suprema

• For a (possibly uncountable) index set T, consider a real-valued random process𝒳 ≔ 𝑋𝑡 ∶ 𝑡 ∈ T

• Think about 𝒳 as a map from each point 𝑡 ∈ T to a random variable 𝑋𝑡

• Define a random variable 𝑍 ≔ sup{𝑋𝑡 ∶ 𝑡 ∈ T}

• We can apply concentration inequalities to 𝑍, but what is 𝔼 𝑍 ?

Example:

• For a random matrix 𝑿 ∈ ℝ𝑚×𝑛, its spectral norm is 

𝑿 = sup 𝒖⊤𝑿𝒗 ∶ 𝒖 2 = 1, 𝒗 2 = 1

• T = 𝕊𝑚−1 × 𝕊𝑛−1, and for 𝑡 = 𝒖, 𝒗 ∈ 𝑇 the random variable 𝑋𝑡 ≔ 𝒖⊤𝑿𝒗

• 𝔼 𝑿 = 𝔼 sup 𝑋𝑡 ∶ 𝑡 ∈ T
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Universality / Invariance principle

• If 𝑋1, … , 𝑋𝑛 are independent (or weakly dependent) random variables, then the expectation 

𝔼 𝑓 𝑋1, … , 𝑋𝑛 is “insensitive” to the distribution of 𝑋1, … , 𝑋𝑛 when the function 𝑓 is “sufficiently 

smooth.

Example 1: central-limit theorem

• Let 𝑋1, 𝑋2, … be a sequence of iid random variables with 𝔼 𝑋𝑖 = 𝜇 and Var 𝑋𝑖 = 𝜎2. Then

𝑛 𝑋𝑛 − 𝜇 → 𝒩 0, 𝜎2 as 𝑛 → ∞
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𝜇𝑛 ≔ 𝔼
1

𝑛
෍

𝑖=1

𝑛

𝛿𝜆𝑖 Τ𝑿 𝑛 → 𝜇sc d𝑥 ≔
1

2𝜋
4 − 𝑥2𝟏 𝑥 ≤2

Universality / Invariance principle

• If 𝑋1, … , 𝑋𝑛 are independent (or weakly dependent) random variables, then the expectation 

𝔼 𝑓 𝑋1, … , 𝑋𝑛 is “insensitive” to the distribution of 𝑋1, … , 𝑋𝑛 when the function 𝑓 is “sufficiently 

smooth.

Example 2: Wigner matrix

• Let 𝑿 ∈ ℝ𝑛×𝑛 be a symmetric matrix whose entries 𝑿𝑖𝑗 are independent random variables with 𝔼 𝑿𝑖𝑗 =

0, 𝔼 𝑿𝑖𝑗
2 = 1, and 𝔼 𝑿𝑖𝑗

3 ≤ 𝐶 for 𝑖 ≥ 𝑗

• The (averaged) histogram of the eigenvalues of the matrix 
𝑿

𝑛
looks, when 𝑛 is large, like a semicircle
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Phase transition

• The behavior of probabilistic models tends to undergo abrupt changes when the model parameters cross 

some threshold value.

Example:

• Let 𝑋1, … , 𝑋𝑛 be iid Bernoulli random variables, that is, Pr 𝑋𝑖 = 1 = 𝑝 and Pr 𝑋𝑖 = 0 = 1 − 𝑝

• Let 𝑓: 0,1 𝑛 → 0,1 be a Boolean function

• For a large family of 𝑓, the expectation 𝔼𝑝 𝑓 𝑋1, … , 𝑋𝑛 exhibits a sharp transition as 𝑝 changes

• Concretely, you can view 𝑓 as a voting rule that takes 𝑛 votes and outputs the winner

→ Majority: 𝑓 𝑥1, … , 𝑥𝑛 = 𝟏𝑥1+⋯+𝑥𝑛≥ Τ𝑛 2

→ Dictatorship: 𝑓 𝑥1, … , 𝑥𝑛 = 𝑥1

→ Tribes: 𝑓 𝑥1, … , 𝑥𝑛 = 𝑥1 ∧ ⋯∧ 𝑥𝑤 ∨ 𝑥𝑤+1 ∧ ⋯∧ 𝑥2𝑤 ∨ ⋯∨ (𝑥𝑛−𝑤+1 ∧ ⋯∧ 𝑥𝑛)
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Phase transition
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• Introduction to High-Dimensional Probability

• Markov Inequality

• Chebyshev Inequality
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Let 𝑋 be a non-negative random variable. Then, we have

Pr 𝑋 ≥ 𝑡 ≤
𝔼 𝑋

𝑡

Proof. 

• Let 𝜇 𝑥 be the probability density function of 𝑋

• The expectation 𝔼 𝑋 can be expressed as:

𝔼 𝑋 = න
0

∞

𝑥𝜇 𝑥 d𝑥 = න
0

∞

න
0

𝑥

𝜇 𝑥 d𝑦 d𝑥 = න
0

∞

න
𝑦

∞

𝜇 𝑥 d𝑥 d𝑦 = න
0

∞

Pr 𝑋 ≥ 𝑦 d𝑦

• Pr 𝑋 ≥ 𝑦 is a non-increasing function of 𝑦, which implies that

𝔼 𝑋 = න
0

∞

Pr 𝑋 ≥ 𝑦 d𝑦 ≥ න
0

𝑡

Pr 𝑋 ≥ 𝑦 d𝑦 ≥ න
0

𝑡

Pr 𝑋 ≥ 𝑡 d𝑦 = 𝑡 Pr 𝑋 ≥ 𝑡

∎
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Let 𝑋 be a non-negative random variable. Then, we have

Pr 𝑋 ≥ 𝑡 ≤
𝔼 𝑋

𝑡

Proof (discrete case). 

• Let’s prove it by contradiction. Suppose ∃𝑡 > 0 such that  Pr 𝑋 ≥ 𝑡 > Τ𝔼 𝑋 𝑡

𝔼 𝑋 =෍

𝑖∈Ω

𝑖 Pr[𝑋 = 𝑖] =෍

𝑖<𝑡

𝑖 Pr[𝑋 = 𝑖] +෍

𝑖≥𝑡

𝑖 Pr[𝑋 = 𝑖]

≥෍

𝑖≥𝑡

𝑖 Pr 𝑋 = 𝑖 ≥෍

𝑖≥𝑡

𝑡 Pr 𝑋 = 𝑖 = 𝑡෍

𝑖≥𝑡

Pr 𝑋 = 𝑖 = 𝑡 Pr 𝑋 ≥ 𝑡

> 𝔼 𝑋

• We get 𝔼 𝑋 > 𝔼 𝑋 , contradiction!

∎
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Pigeon-hole principle / Averaging argument

• Suppose (𝑅, 𝐶) is a joint distribution over 𝑚 × 𝑛 . 

Intuitively, think of a matrix with 𝑚-rows and 𝑛-columns

• Let ℰ ⊂ 𝑚 × 𝑛 be a subset of cells such that Pr 𝑅, 𝐶 ∈ ℰ ≥ 𝜖

• Let 𝑋𝑟 ≔ Pr 𝑅, 𝐶 ∈ ℰ 𝑅 = 𝑟

• Then, for 𝜖 ∈ (0,1), 𝛼 ∈ 0, 𝜖 , we have Pr 𝑋𝑅 ≥ 𝛼 >
𝜖−𝛼

1−𝛼

Τ1 3

0

Τ1 2

Τ1 6

Τ2 3

Τ1 3

𝑋𝑟
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Pigeon-hole principle / Averaging argument

• Suppose (𝑅, 𝐶) is a joint distribution over 𝑚 × 𝑛 . 

Intuitively, think of a matrix with 𝑚-rows and 𝑛-columns

• Let ℰ ⊂ 𝑚 × 𝑛 be a subset of cells such that Pr 𝑅, 𝐶 ∈ ℰ ≥ 𝜖

• Let 𝑋𝑟 ≔ Pr 𝑅, 𝐶 ∈ ℰ 𝑅 = 𝑟

• Then, for 𝜖 ∈ (0,1), 𝛼 ∈ 0, 𝜖 , we have Pr 𝑋𝑅 ≥ 𝛼 >
𝜖−𝛼

1−𝛼

1

1

0

0

0

0

𝑋𝑟
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Pigeon-hole principle / Averaging argument

• Suppose (𝑅, 𝐶) is a joint distribution over 𝑚 × 𝑛 . 

Intuitively, think of a matrix with 𝑚-rows and 𝑛-columns

• Let ℰ ⊂ 𝑚 × 𝑛 be a subset of cells such that Pr 𝑅, 𝐶 ∈ ℰ ≥ 𝜖

• Let 𝑋𝑟 ≔ Pr 𝑅, 𝐶 ∈ ℰ 𝑅 = 𝑟

• Then, for 𝜖 ∈ (0,1), 𝛼 ∈ 0, 𝜖 , we have Pr 𝑋𝑅 ≥ 𝛼 >
𝜖−𝛼

1−𝛼

Proof.

• We know that 𝔼 𝑋𝑅 ≥ 𝜖 and 𝑋𝑅 ≤ 1

• By the law of total expectation, we have

𝔼 𝑋𝑅 = 𝔼 𝑋𝑅 𝑋𝑅 ≥ 𝛼 ⋅ Pr 𝑋𝑅 ≥ 𝛼 + 𝔼 𝑋𝑅 𝑋𝑅 < 𝛼 ⋅ 1 − Pr 𝑋𝑅 ≥ 𝛼 ≥ 𝜖

≤ 1 < 𝛼

Τ1 3

Τ1 3

Τ1 3

Τ1 3

Τ1 3

Τ1 3

𝑋𝑟
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Pigeon-hole principle / Averaging argument

• Suppose (𝑅, 𝐶) is a joint distribution over 𝑚 × 𝑛 . 

Intuitively, think of a matrix with 𝑚-rows and 𝑛-columns

• Let ℰ ⊂ 𝑚 × 𝑛 be a subset of cells such that Pr 𝑅, 𝐶 ∈ ℰ ≥ 𝜖

• Let 𝑋𝑟 ≔ Pr 𝑅, 𝐶 ∈ ℰ 𝑅 = 𝑟

• Then, for 𝜖 ∈ (0,1), 𝛼 ∈ 0, 𝜖 , we have Pr 𝑋𝑅 ≥ 𝛼 >
𝜖−𝛼

1−𝛼

Proof.

• We get that

Pr 𝑋𝑅 ≥ 𝛼 + 𝛼 1 − Pr 𝑋𝑅 ≥ 𝛼 > 𝜖

Pr 𝑋𝑅 ≥ 𝛼 >
𝜖 − 𝛼

1 − 𝛼
∎
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First-moment principle

Let 𝑋 be a random variable with 𝔼 𝑋 = 𝜇. Then, we have

Pr 𝑋 ≥ 𝜇 > 0 , Pr 𝑋 ≤ 𝜇 > 0

It is a special case of the pigeon-hole principle (in the previous slide) with 𝛼 = 𝜖 = 𝜇

Proof.

• We’ll prove by contradiction. Suppose Pr 𝑋 ≥ 𝜇 = 0

• Then, the expectation becomes:

𝜇 = 𝔼 𝑋 =෍

𝑥

𝑥 Pr 𝑋 = 𝑥 = ෍

𝑥<𝜇

𝑥 Pr 𝑋 = 𝑥 < 𝜇෍

𝑥<𝜇

Pr 𝑋 = 𝑥 = 𝜇

• It implies 𝜇 < 𝜇, which is a contradiction

∎
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• To what extent is randomness essential for efficient algorithms?

• BPP = P

Basic idea of derandomization

• Every randomized algorithm can be expressed as a deterministic function 𝒜 𝑥, 𝑟

• 𝑥 ∈ 0,1 𝑛 is the input and 𝑟 ∈ 0,1 𝑚 is the random string

• BPP guarantees that, for any 𝑥 ∈ 0,1 𝑛,

Pr
𝑟∼ 0,1 𝑛

[𝒜 𝑥, 𝑟 = 𝑓 𝑥 ] ≥ Τ2 3

• If there is a deterministic algorithm ℬ 𝑥 that outputs “good” random string 𝑟

• Then 𝒜 𝑥,ℬ 𝑥 is a deterministic algorithm that computes 𝑓

?

i.e.  at least 
2

3
-fraction of 𝑟’s are 

“good” for 𝑥
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Max-3SAT:

• 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥7 ∧⋯ is a 3-CNF formula with 𝑛 variables and 𝑚 clauses of size 3

• Find an assignment of 𝑥1, … , 𝑥𝑛 ∈ 0,1 to satisfy the most clauses

Randomized algorithm

• Set each 𝑥𝑖 = 0 or 1 with probability Τ1 2 independently

• Let 𝑍𝑖 ∈ 0,1 indicate whether the 𝑖-th clause is satisfied

• 𝔼 𝑍𝑖 = Τ7 8 (check by yourself)

• Let 𝑍 ≔ 𝑍1 +⋯+ 𝑍𝑚 be the total number of satisfied clauses

• By the linearity of expectation, 𝔼 𝑍 = 𝔼 𝑍1 +⋯+ 𝔼 𝑍𝑚 =
7

8
𝑚
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Max-3SAT:

• 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥7 ∧⋯ is a 3-CNF formula with 𝑛 variables and 𝑚 clauses of size 3

• Find an assignment of 𝑥1, … , 𝑥𝑛 ∈ 0,1 to satisfy the most clauses

Derandomization via conditional expectation

• By the first moment principle, 𝔼 𝑍 ≥ Τ7 8 𝑚 implies that Pr 𝑍 ≥ Τ7 8 𝑚 > 0

• Our goal is to find such an assignment

• By the law of total expectation,

𝔼 𝑍 = 𝔼 𝑍 𝑥1 = 0 ⋅
1

2
+ 𝔼 𝑍 𝑥1 = 1 ⋅

1

2
≥
7

8
𝑚

• Either 𝔼 𝑍 𝑥1 = 0 ≥ Τ7 8 𝑚 or 𝔼 𝑍 𝑥1 = 1 ≥ Τ7 8 𝑚. Then, we can fix the value of 𝑥1

• How to calculate the conditional expectation?
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Max-3SAT:

• 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥4 ∨ 𝑥7 ∧⋯ is a 3-CNF formula with 𝑛 variables and 𝑚 clauses of size 3

• Find an assignment of 𝑥1, … , 𝑥𝑛 ∈ 0,1 to satisfy the most clauses

Derandomization via conditional expectation

• We can iterate this process to find the values of 𝑥2, 𝑥3, … , 𝑥𝑛

• During this process, we always maintain that

𝔼 𝑍 𝑥1 = 𝑎1, 𝑥2 = 𝑎2, … , 𝑥𝑘 = 𝑎𝑘 ≥
7

8
𝑚

• Thus, after the final round, we obtain an assignment can satisfy at least Τ7 8 𝑚 clauses
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One of the most powerful method in combinatorics to show the existence of some object 

without giving an explicit construction

1. Construct a probability space over the possible objects and their attributes (e.g. 

graphs)

2. Show that Pr[sampled object having the properties] > 0
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• Introduction to High-Dimensional Probability

• Markov Inequality

• Chebyshev Inequality
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Variance

Let 𝑋 be a real random variable. The variance of 𝑋 is

Var 𝑋 ≔ 𝔼 𝑋 − 𝔼 𝑋 2 = 𝔼 𝑋2 − 𝔼 𝑋 2 ≥ 0

Chebyshev Inequality

Let 𝑋 be a real random variable. Then

Pr 𝑋 − 𝔼 𝑋 ≥ 𝑡 ≤
Var 𝑋

𝑡2
∀ 𝑡 > 0

Equivalently, if Var 𝑋 = 𝜎2, then

Pr 𝑋 − 𝔼 𝑋 ≥ 𝑡𝜎 ≤ min 𝑡−2, 1

(Why?)
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Let 𝑋 be a real random variable. Then

Pr 𝑋 − 𝔼 𝑋 ≥ 𝑡 ≤
Var 𝑋

𝑡2
∀ 𝑡 > 0

Proof.

• Pr 𝑋 − 𝔼 𝑋 ≥ 𝑡 = Pr 𝑋 − 𝔼 𝑋 2 ≥ 𝑡2

• Apply Markov inequality to 𝑋 − 𝔼 𝑋 2:

Pr 𝑋 − 𝔼 𝑋 2 ≥ 𝑡2 ≤
𝔼 𝑋 − 𝔼 𝑋 2

𝑡2
=
Var 𝑋

𝑡2

∎
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Let 𝑋 be a real random variable. Then

Pr 𝑋 − 𝔼 𝑋 ≥ 𝑡 ≤
Var 𝑋

𝑡2
∀ 𝑡 > 0

How to estimate the variance?

• Range bound

• Tensorization of variance
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Range bound

Let 𝑋 be a random variable whose support is contained in 𝑎, 𝑏 . Then

Var 𝑋 ≤
1

4
𝑏 − 𝑎 2

Proof.

• Variational formulation (check by yourself):  for any random variable 𝑋, 

Var 𝑋 = inf
𝜏
𝔼 𝑋 − 𝜏 2

And the infimum is attained at 𝜏 = 𝔼 𝑋

• Set 𝜏 = Τ𝑏 + 𝑎 2. Then we have 𝑋 − 𝜏 ≤ Τ𝑏 − 𝑎 2

Think: when the range bound is tight
∎
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Range bound

Let 𝑋 be a random variable whose support is contained in 𝑎, 𝑏 . Then

Var 𝑋 ≤
1

4
𝑏 − 𝑎 2

Example:

• Let 𝑋1, … , 𝑋𝑛 be independent random variables such that supp 𝑋𝑖 ⊂ 𝑎𝑖 , 𝑏𝑖

• Let 𝑍 = 𝑋1 +⋯+ 𝑋𝑛

• By the independence, we know that 

Var 𝑍 =෍

𝑖=1

𝑛

Var 𝑋𝑖 ≤
1

4
෍

𝑖=1

𝑛

𝑏𝑖 − 𝑎𝑖
2 =∶

1

4
෍

𝑖=1

𝑛

𝑐𝑖
2 =

1

4
𝒄 2

2
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Range bound

Let 𝑋 be a random variable whose support is contained in 𝑎, 𝑏 . Then

Var 𝑋 ≤
1

4
𝑏 − 𝑎 2

Example:

• Let 𝑋1, … , 𝑋𝑛 be independent random variables such that supp 𝑋𝑖 ⊂ 𝑎𝑖 , 𝑏𝑖

• Let 𝑍 = 𝑋1 +⋯+ 𝑋𝑛

• On the other hand, it is easy to see that supp 𝑍 ⊂ σ𝑖=1
𝑛 𝑎𝑖 , σ𝑖=1

𝑛 𝑏𝑖

• Thus,

Var 𝑍 ≤
1

4
෍

𝑖=1

𝑛

𝑏𝑖 −෍

𝑖=1

𝑛

𝑎𝑖

2

=
1

4
෍

𝑖=1

𝑛

𝑐𝑖

2

=
1

4
𝒄 1

2
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Range bound

Let 𝑋 be a random variable whose support is contained in 𝑎, 𝑏 . Then

Var 𝑋 ≤
1

4
𝑏 − 𝑎 2

Example:

• Let 𝑋1, … , 𝑋𝑛 be independent random variables such that supp 𝑋𝑖 ⊂ 𝑎𝑖 , 𝑏𝑖

• Let 𝑍 = 𝑋1 +⋯+ 𝑋𝑛

Var 𝑍 ≤
1

4
min 𝒄 1

2, 𝒄 2
2

• Think: when 𝒄 2 ≪ 𝒄 1 and when 𝒄 2 ≈ 𝒄 1
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“A random variable that depends (in a ‘smooth’ way) on the influence of many independent 

variables (but not too much on any of them) is essentially constant.”

Michel Talagrand ’96

(Source: Joel A. Tropp)
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Tensorization

• The motivation comes from the additivity law of variance for independent sum: 

Var 𝑍 = Var 𝑋1 +⋯+ Var 𝑋𝑛

• What if 𝑍 = 𝑓 𝑋1, … , 𝑋𝑛 a general function?
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Tensorization

• We define the coordinatewise expectation:  for any 𝑖 ∈ 𝑛 , 

𝔼𝑖 𝑍 ≔ 𝔼 𝑍 𝑋1, … , 𝑋𝑖−1, 𝑋𝑖+1, … , 𝑋𝑛

Note that 𝔼𝑖 𝑍 is a random variable depending on 𝑋𝑗 ∶ 𝑗 ≠ 𝑖

𝔼𝑖 𝑍 ≡ 𝔼𝑖 𝑍 𝑋1, … , 𝑋𝑖−1, 𝑋𝑖+1, … , 𝑋𝑛

• We can also define the coordinatewise variance:  for any 𝑖 ∈ 𝑛 ,

Var𝑖 𝑍 ≔ 𝔼𝑖 𝑍 − 𝔼𝑖 𝑍
2 = 𝔼𝑖 𝑍

2 − 𝔼𝑖 𝑍
2

Theorem.  Suppose 𝑋1, … , 𝑋𝑛 are independent random variables. Let 𝑍 = 𝑓 𝑋1, … , 𝑋𝑛 . 

Var 𝑍 ≤ 𝔼 ෍

𝑖=1

𝑛

Var𝑖 𝑍
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Tensorization

Theorem.  Suppose 𝑋1, … , 𝑋𝑛 are independent random variables. Let 𝑍 = 𝑓 𝑋1, … , 𝑋𝑛 . 

Var 𝑍 ≤ 𝔼 ෍

𝑖=1

𝑛

Var𝑖 𝑍

• You can check that when 𝑍 = 𝑋1 +⋯+ 𝑋𝑛, Var𝑖 𝑍 = Var 𝑋𝑖 . The tensorization inequality for 

variances holds with equality.

• The proof uses Doob’s martingale (we’ll discuss it later in this course)

𝔼 Var𝑖 𝑓 𝑋1, … , 𝑋𝑛 =෍

𝑥1

⋯෍

𝑥𝑖−1

෍

𝑥𝑖+1

⋯෍

𝑥𝑛

Var 𝑓 𝑥1, … , 𝑥𝑖−1, 𝑋𝑖 , 𝑥𝑖+1, … , 𝑥𝑛 ෑ

𝑗≠𝑖

Pr 𝑋𝑗 = 𝑥𝑗
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Tensorization

Theorem.  Suppose 𝑋1, … , 𝑋𝑛 are independent random variables. Let 𝑍 = 𝑓 𝑋1, … , 𝑋𝑛 . 

Var 𝑍 ≤ 𝔼 ෍

𝑖=1

𝑛

Var𝑖 𝑍

Corollary. For 𝑍 = 𝑓 𝑋1, … , 𝑋𝑛 , define the 𝑖-th discrete partial derivative as:

𝐷𝑖𝑓 𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛 ≔ sup
𝑧∈supp 𝑋𝑖

𝑓 𝑥1, … , 𝑥𝑖−1, 𝑧, 𝑥𝑖+1, … , 𝑥𝑛

− inf
𝑧∈supp 𝑋𝑖

𝑓 𝑥1, … , 𝑥𝑖−1, 𝑧, 𝑥𝑖+1, … , 𝑥𝑛

Then, 

Var 𝑍 ≤
1

4
෍

𝑖=1

𝑛

𝔼 𝐷𝑖𝑓
2

Proof.
• Range bound for Var𝑖 𝑍 :

Var𝑖 𝑍 ≤
1

4
𝐷𝑖𝑓

2
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Tensorization

Corollary. For 𝑍 = 𝑓 𝑋1, … , 𝑋𝑛 , define the 𝑖-th discrete partial derivative as:

𝐷𝑖𝑓 𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛 ≔ sup
𝑧∈supp 𝑋𝑖

𝑓 𝑥1, … , 𝑥𝑖−1, 𝑧, 𝑥𝑖+1, … , 𝑥𝑛

− inf
𝑧∈supp 𝑋𝑖

𝑓 𝑥1, … , 𝑥𝑖−1, 𝑧, 𝑥𝑖+1, … , 𝑥𝑛

Then, 

Var 𝑍 ≤
1

4
෍

𝑖=1

𝑛

𝔼 𝐷𝑖𝑓
2

• Can we further generalize it to dependent random variables?

• Related to the Poincaré inequality:

Var 𝑓(𝑿) ≤ 𝐶PI ⋅ 𝔼 ∇𝑓 𝑿 2
2
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