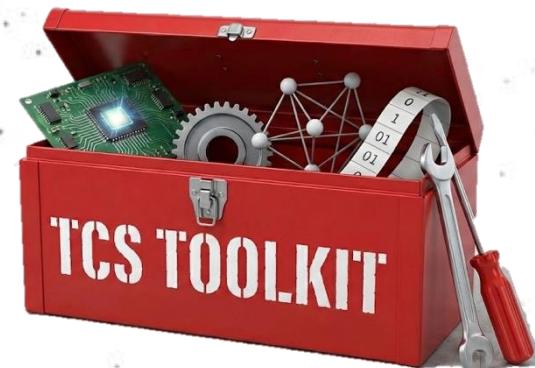


CS 58500 – Theoretical Computer Science Toolkit

Lecture 2 (01/22)

Concentration Inequality I

https://ruizhezhang.com/course_spring_2026.html



Today's Lecture

- Introduction to High-Dimensional Probability
- Markov Inequality
- Chebyshev Inequality

High-Dimensional Probability

HDP focuses on probabilistic models involving either many random variables or variables that take values in high-dimensional spaces, analyzed in a quantitative and **non-asymptotic** manner

Theorem (Weak law of large numbers (WLLN)).

Let X be a real random variable with expectation $\mathbb{E}[X] = m$. Consider an *iid* sequence $\{X_i\}_{i \in \mathbb{N}}$ of copies of X , and let

$$\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i \quad \text{for } n \in \mathbb{N}$$

Then, for any $t > 0$, we have the limit

$$\Pr[|\bar{X}_n - m| \geq t] \rightarrow 0 \quad \text{as } n \rightarrow \infty$$

Why WLLN is not useful?

High-Dimensional Probability

HDP focuses on probabilistic models involving either many random variables or variables that take values in high-dimensional spaces, analyzed in a quantitative and **non-asymptotic** manner

Example:

- Flip n unbiased coins
- Let X_1, \dots, X_n be the outcomes (i.e., $X_i := 1$ for “head” and $X_i := 0$ for “tail”)
- By the **linearity of expectation**, $\mathbb{E}[\bar{X}_n] = \frac{1}{n}(\mathbb{E}[X_1] + \dots + \mathbb{E}[X_n]) = \frac{1}{2}$
- WLLN $\Rightarrow \Pr\left[\left|\bar{X}_n - \frac{1}{2}\right| \geq t\right] \rightarrow 0$ as $n \rightarrow \infty$
- However, we only have a finite number of coins (say, 100). What is the probability of getting 60 heads?

High-Dimensional Probability

Phenomena in HDP

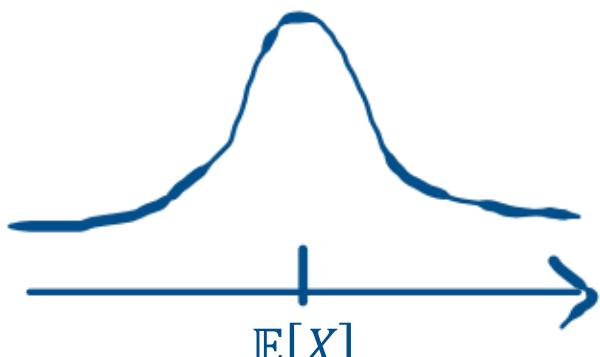
- Concentration
- Suprema
- Universality
- Phase transition

High-Dimensional Probability

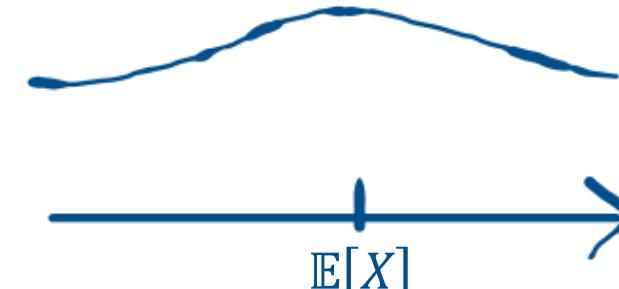
Concentration

- Consider a collection of random variables (X_1, \dots, X_n) and a measurable function f
- Define a random variable $Z := f(X_1, \dots, X_n)$
- **Concentration inequalities** take the following forms:

$$\Pr[|Z - \text{median}(Z)| \geq t] \leq \dots \quad \text{or} \quad \Pr[|Z - \mathbb{E}[Z]| \geq t] \leq \dots$$



Strong concentration



Weak concentration

High-Dimensional Probability

Suprema

- For a (possibly uncountable) index set T , consider a real-valued **random process** $\mathcal{X} := (X_t : t \in T)$
- Think about \mathcal{X} as a map from each point $t \in T$ to a random variable X_t
- Define a random variable $Z := \sup\{X_t : t \in T\}$
- We can apply concentration inequalities to Z , but what is $\mathbb{E}[Z]$?

Example:

- For a random matrix $X \in \mathbb{R}^{m \times n}$, its spectral norm is
$$\|X\| = \sup\{\mathbf{u}^\top X \mathbf{v} : \|\mathbf{u}\|_2 = 1, \|\mathbf{v}\|_2 = 1\}$$
- $T = \mathbb{S}^{m-1} \times \mathbb{S}^{n-1}$, and for $t = (\mathbf{u}, \mathbf{v}) \in T$ the random variable $X_t := \mathbf{u}^\top X \mathbf{v}$
- $\mathbb{E}[\|X\|] = \mathbb{E}[\sup\{X_t : t \in T\}]$

High-Dimensional Probability

Universality / Invariance principle

- If X_1, \dots, X_n are independent (or weakly dependent) random variables, then the expectation $\mathbb{E}[f(X_1, \dots, X_n)]$ is “insensitive” to the distribution of X_1, \dots, X_n when the function f is “sufficiently smooth.”

Example 1: central-limit theorem

- Let X_1, X_2, \dots be a sequence of *iid* random variables with $\mathbb{E}[X_i] = \mu$ and $\text{Var}[X_i] = \sigma^2$. Then

$$\sqrt{n}(\bar{X}_n - \mu) \rightarrow \mathcal{N}(0, \sigma^2) \quad \text{as } n \rightarrow \infty$$

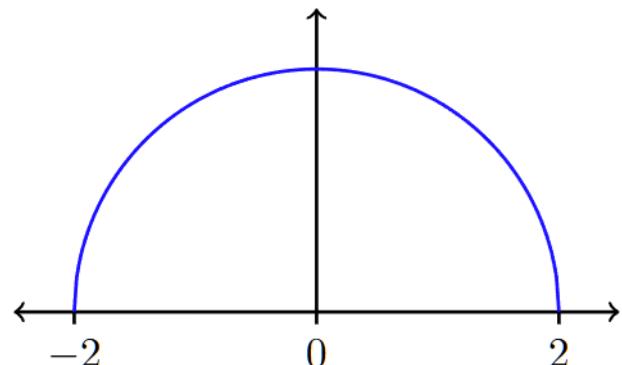
High-Dimensional Probability

Universality / Invariance principle

- If X_1, \dots, X_n are independent (or weakly dependent) random variables, then the expectation $\mathbb{E}[f(X_1, \dots, X_n)]$ is “insensitive” to the distribution of X_1, \dots, X_n when the function f is “sufficiently smooth.”

Example 2: Wigner matrix

- Let $X \in \mathbb{R}^{n \times n}$ be a symmetric matrix whose entries X_{ij} are independent random variables with $\mathbb{E}[X_{ij}] = 0$, $\mathbb{E}[X_{ij}^2] = 1$, and $\mathbb{E}[|X_{ij}^3|] \leq C$ for $i \geq j$
- The (averaged) histogram of the eigenvalues of the matrix $\frac{X}{\sqrt{n}}$ looks, when n is large, like a **semicircle**



$$\mu_n := \mathbb{E} \left[\frac{1}{n} \sum_{i=1}^n \delta_{\lambda_i(X/\sqrt{n})} \right] \rightarrow \mu_{\text{sc}}(dx) := \frac{1}{2\pi} \sqrt{4 - x^2} \mathbf{1}_{|x| \leq 2}$$

High-Dimensional Probability

Phase transition

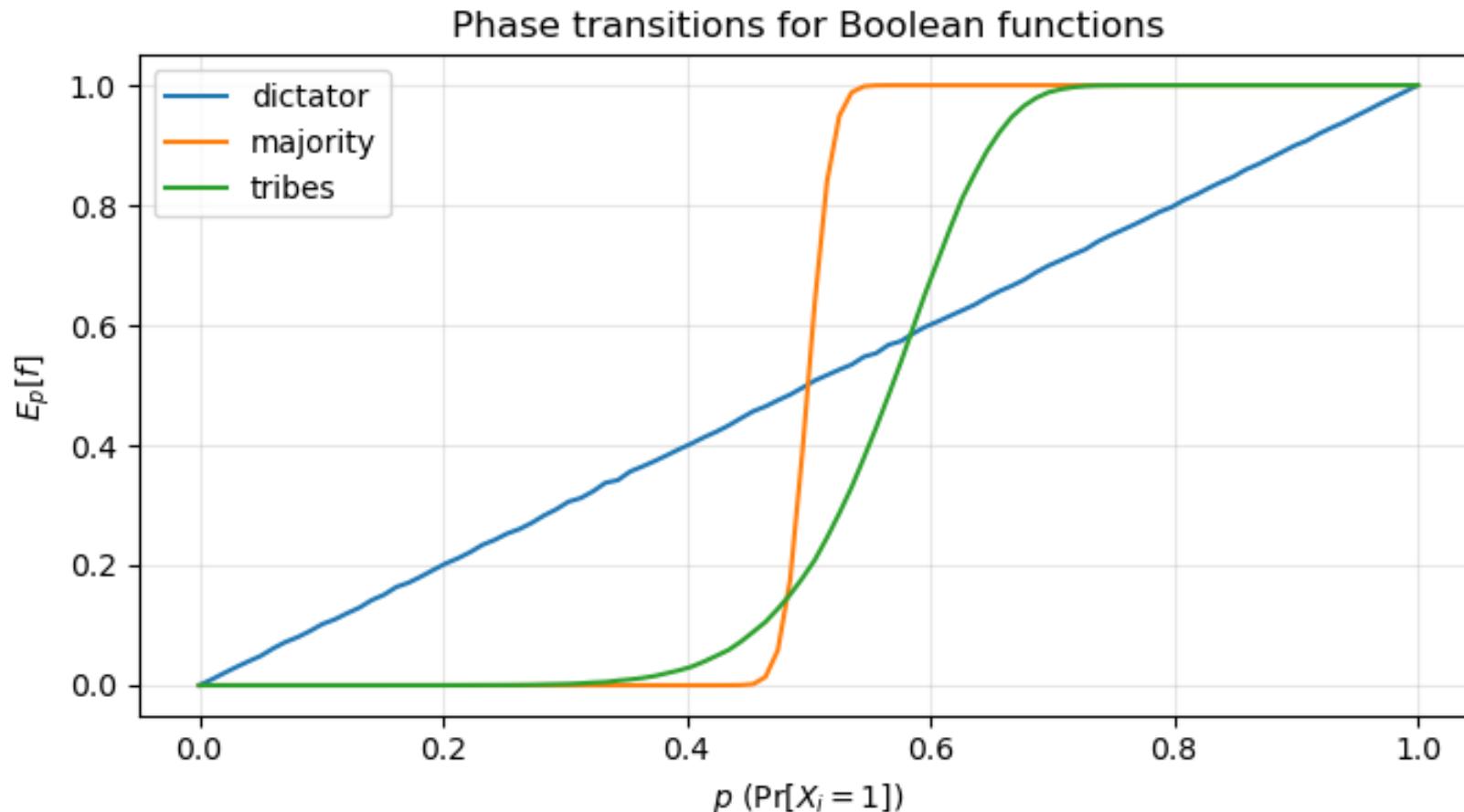
- The behavior of probabilistic models tends to undergo abrupt changes when the model parameters cross some threshold value.

Example:

- Let X_1, \dots, X_n be iid Bernoulli random variables, that is, $\Pr[X_i = 1] = p$ and $\Pr[X_i = 0] = 1 - p$
- Let $f: \{0,1\}^n \rightarrow \{0,1\}$ be a Boolean function
- For a large family of f , the expectation $\mathbb{E}_p[f(X_1, \dots, X_n)]$ exhibits a sharp transition as p changes
- Concretely, you can view f as a voting rule that takes n votes and outputs the winner
 - Majority: $f(x_1, \dots, x_n) = \mathbf{1}_{x_1 + \dots + x_n \geq n/2}$
 - Dictatorship: $f(x_1, \dots, x_n) = x_1$
 - Tribes: $f(x_1, \dots, x_n) = (x_1 \wedge \dots \wedge x_w) \vee (x_{w+1} \wedge \dots \wedge x_{2w}) \vee \dots \vee (x_{n-w+1} \wedge \dots \wedge x_n)$

High-Dimensional Probability

Phase transition



Today's Lecture

- Introduction to High-Dimensional Probability
- Markov Inequality
- Chebyshev Inequality

Markov Inequality

Let X be a **non-negative** random variable. Then, we have

$$\Pr[X \geq t] \leq \frac{\mathbb{E}[X]}{t}$$

Proof.

- Let $\mu(x)$ be the probability density function of X
- The expectation $\mathbb{E}[X]$ can be expressed as:

$$\mathbb{E}[X] = \int_0^\infty x\mu(x)dx = \int_0^\infty \left(\int_0^x \mu(y)dy \right) dx = \int_0^\infty \left(\int_y^\infty \mu(x)dx \right) dy = \int_0^\infty \Pr[X \geq y]dy$$

- $\Pr[X \geq y]$ is a non-increasing function of y , which implies that

$$\mathbb{E}[X] = \int_0^\infty \Pr[X \geq y]dy \geq \int_0^t \Pr[X \geq y]dy \geq \int_0^t \Pr[X \geq t]dy = t \Pr[X \geq t]$$

Markov Inequality

Let X be a **non-negative** random variable. Then, we have

$$\Pr[X \geq t] \leq \frac{\mathbb{E}[X]}{t}$$

Proof (discrete case).

- Let's prove it by contradiction. Suppose $\exists t > 0$ such that $\Pr[X \geq t] > \mathbb{E}[X]/t$

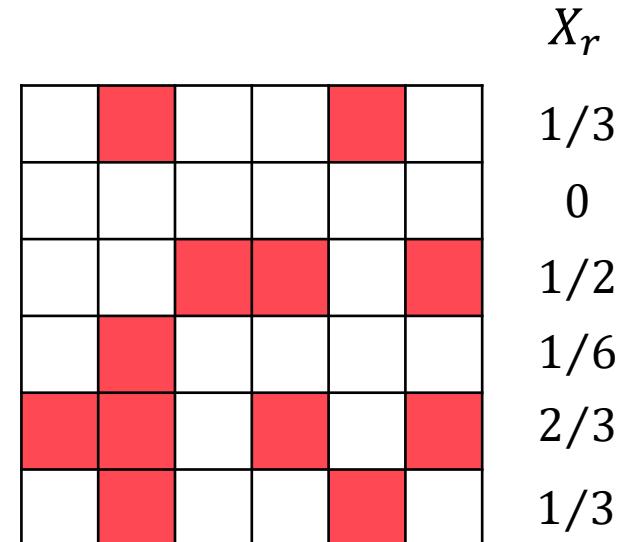
$$\begin{aligned}\mathbb{E}[X] &= \sum_{i \in \Omega} i \Pr[X = i] = \sum_{i < t} i \Pr[X = i] + \sum_{i \geq t} i \Pr[X = i] \\ &\geq \sum_{i \geq t} i \Pr[X = i] \geq \sum_{i \geq t} t \Pr[X = i] = t \sum_{i \geq t} \Pr[X = i] = t \Pr[X \geq t] \\ &> \mathbb{E}[X]\end{aligned}$$

- We get $\mathbb{E}[X] > \mathbb{E}[X]$, contradiction!

Markov Inequality

Pigeon-hole principle / Averaging argument

- Suppose (R, C) is a joint distribution over $[m] \times [n]$.
Intuitively, think of a matrix with m -rows and n -columns
- Let $\mathcal{E} \subset [m] \times [n]$ be a subset of cells such that $\Pr[(R, C) \in \mathcal{E}] \geq \epsilon$
- Let $X_r := \Pr[(R, C) \in \mathcal{E} | R = r]$
- Then, for $\epsilon \in (0, 1)$, $\alpha \in [0, \epsilon]$, we have $\Pr[X_r \geq \alpha] > \frac{\epsilon - \alpha}{1 - \alpha}$



Markov Inequality

Pigeon-hole principle / Averaging argument

- Suppose (R, C) is a joint distribution over $[m] \times [n]$.
Intuitively, think of a matrix with m -rows and n -columns
- Let $\mathcal{E} \subset [m] \times [n]$ be a subset of cells such that $\Pr[(R, C) \in \mathcal{E}] \geq \epsilon$
- Let $X_r := \Pr[(R, C) \in \mathcal{E} | R = r]$
- Then, for $\epsilon \in (0, 1)$, $\alpha \in [0, \epsilon]$, we have $\Pr[X_r \geq \alpha] > \frac{\epsilon - \alpha}{1 - \alpha}$

X_r	1	1	0	0	0	0
1	1	1	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Markov Inequality

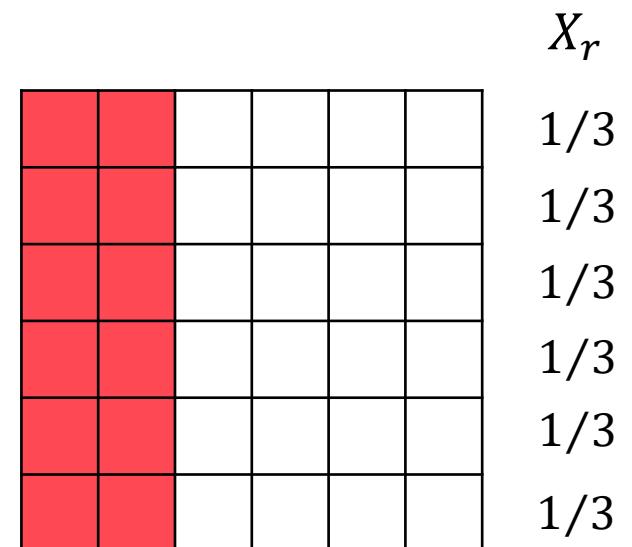
Pigeon-hole principle / Averaging argument

- Suppose (R, C) is a joint distribution over $[m] \times [n]$.
Intuitively, think of a matrix with m -rows and n -columns
- Let $\mathcal{E} \subset [m] \times [n]$ be a subset of cells such that $\Pr[(R, C) \in \mathcal{E}] \geq \epsilon$
- Let $X_r := \Pr[(R, C) \in \mathcal{E} | R = r]$
- Then, for $\epsilon \in (0, 1)$, $\alpha \in [0, \epsilon]$, we have $\Pr[X_r \geq \alpha] > \frac{\epsilon - \alpha}{1 - \alpha}$

Proof.

- We know that $\mathbb{E}[X_r] \geq \epsilon$ and $X_r \leq 1$
- By the **law of total expectation**, we have

$$\mathbb{E}[X_r] = \underbrace{\mathbb{E}[X_r | X_r \geq \alpha] \cdot \Pr[X_r \geq \alpha]}_{\leq 1} + \underbrace{\mathbb{E}[X_r | X_r < \alpha] \cdot (1 - \Pr[X_r \geq \alpha])}_{< \alpha} \geq \epsilon$$



Markov Inequality

Pigeon-hole principle / Averaging argument

- Suppose (R, C) is a joint distribution over $[m] \times [n]$.
Intuitively, think of a matrix with m -rows and n -columns
- Let $\mathcal{E} \subset [m] \times [n]$ be a subset of cells such that $\Pr[(R, C) \in \mathcal{E}] \geq \epsilon$
- Let $X_r := \Pr[(R, C) \in \mathcal{E} | R = r]$
- Then, for $\epsilon \in (0, 1)$, $\alpha \in [0, \epsilon]$, we have $\Pr[X_R \geq \alpha] > \frac{\epsilon - \alpha}{1 - \alpha}$

Proof.

- We get that

$$\Pr[X_R \geq \alpha] + \alpha(1 - \Pr[X_R \geq \alpha]) > \epsilon$$

$$\Pr[X_R \geq \alpha] > \frac{\epsilon - \alpha}{1 - \alpha}$$

■

Markov Inequality

First-moment principle

Let X be a random variable with $\mathbb{E}[X] = \mu$. Then, we have

$$\Pr[X \geq \mu] > 0, \quad \Pr[X \leq \mu] > 0$$

It is a special case of the [pigeon-hole principle](#) (in the previous slide) with $\alpha = \epsilon = \mu$

Proof.

- We'll prove by contradiction. Suppose $\Pr[X \geq \mu] = 0$
- Then, the expectation becomes:

$$\mu = \mathbb{E}[X] = \sum_x x \Pr[X = x] = \sum_{x < \mu} x \Pr[X = x] < \mu \sum_{x < \mu} \Pr[X = x] = \mu$$

- It implies $\mu < \mu$, which is a contradiction

Derandomization

- To what extent is randomness essential for efficient algorithms?
- $\text{BPP} \stackrel{?}{=} \text{P}$

Basic idea of derandomization

- Every randomized algorithm can be expressed as a **deterministic** function $\mathcal{A}(x, r)$
- $x \in \{0,1\}^n$ is the input and $r \in \{0,1\}^m$ is the random string
- BPP guarantees that, for any $x \in \{0,1\}^n$,
$$\Pr_{r \sim \{0,1\}^m} [\mathcal{A}(x, r) = f(x)] \geq 2/3$$

i.e. at least $\frac{2}{3}$ -fraction of r 's are
“good” for x
- If there is a deterministic algorithm $\mathcal{B}(x)$ that outputs “good” random string r
- Then $\mathcal{A}(x, \mathcal{B}(x))$ is a deterministic algorithm that computes f

Derandomization

Max-3SAT:

- $(x_1 \vee x_2 \vee \overline{x_3}) \wedge (x_2 \vee x_4 \vee x_7) \wedge \dots$ is a 3-CNF formula with n variables and m clauses of size 3
- Find an assignment of $x_1, \dots, x_n \in \{0,1\}$ to satisfy the most clauses

Randomized algorithm

- Set each $x_i = 0$ or 1 with probability $1/2$ independently
- Let $Z_i \in \{0,1\}$ indicate whether the i -th clause is satisfied
- $\mathbb{E}[Z_i] = 7/8$ (check by yourself)
- Let $Z := Z_1 + \dots + Z_m$ be the total number of satisfied clauses
- By the linearity of expectation, $\mathbb{E}[Z] = \mathbb{E}[Z_1] + \dots + \mathbb{E}[Z_m] = \frac{7}{8}m$

Derandomization

Max-3SAT:

- $(x_1 \vee x_2 \vee \overline{x_3}) \wedge (x_2 \vee x_4 \vee x_7) \wedge \dots$ is a 3-CNF formula with n variables and m clauses of size 3
- Find an assignment of $x_1, \dots, x_n \in \{0,1\}$ to satisfy the most clauses

Derandomization via conditional expectation

- By the [first moment principle](#), $\mathbb{E}[Z] \geq (7/8)m$ implies that $\Pr[Z \geq (7/8)m] > 0$
- Our goal is to find such an assignment
- By the [law of total expectation](#),

$$\mathbb{E}[Z] = \mathbb{E}[Z|x_1 = 0] \cdot \frac{1}{2} + \mathbb{E}[Z|x_1 = 1] \cdot \frac{1}{2} \geq \frac{7}{8}m$$

- Either $\mathbb{E}[Z|x_1 = 0] \geq (7/8)m$ or $\mathbb{E}[Z|x_1 = 1] \geq (7/8)m$. Then, we can [fix](#) the value of x_1
- How to calculate the conditional expectation?

Derandomization

Max-3SAT:

- $(x_1 \vee x_2 \vee \overline{x_3}) \wedge (x_2 \vee x_4 \vee x_7) \wedge \dots$ is a 3-CNF formula with n variables and m clauses of size 3
- Find an assignment of $x_1, \dots, x_n \in \{0,1\}$ to satisfy the most clauses

Derandomization via conditional expectation

- We can iterate this process to find the values of x_2, x_3, \dots, x_n
- During this process, we always maintain that

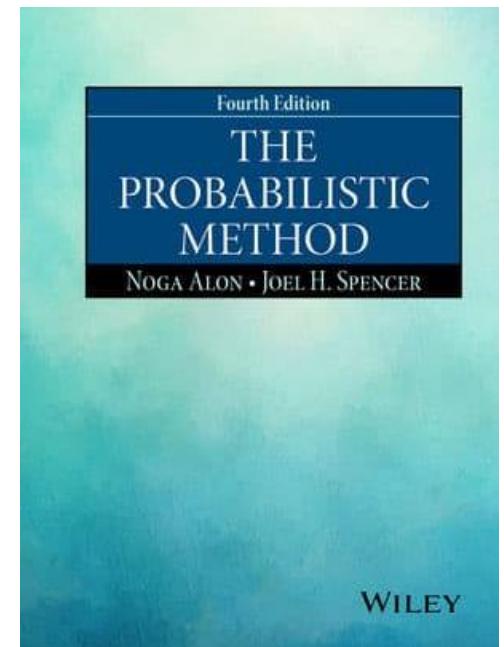
$$\mathbb{E}[Z | x_1 = a_1, x_2 = a_2, \dots, x_k = a_k] \geq \frac{7}{8}m$$

- Thus, after the final round, we obtain an assignment can satisfy at least $(7/8)m$ clauses

Probabilistic methods

One of the most powerful method in combinatorics to show the **existence** of some object **without** giving an **explicit construction**

1. Construct a probability space over the possible objects and their attributes (e.g. graphs)
2. Show that $\Pr[\text{sampled object having the properties}] > 0$



Today's Lecture

- Introduction to High-Dimensional Probability
- Markov Inequality
- Chebyshev Inequality

Chebyshev Inequality

Variance

Let X be a real random variable. The variance of X is

$$\text{Var}[X] := \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2 \geq 0$$

(Why?)

Chebyshev Inequality

Let X be a real random variable. Then

$$\Pr[|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}[X]}{t^2} \quad \forall t > 0$$

Equivalently, if $\text{Var}[X] = \sigma^2$, then

$$\Pr[|X - \mathbb{E}[X]| \geq t\sigma] \leq \min\{t^{-2}, 1\}$$

Chebyshev Inequality

Let X be a real random variable. Then

$$\Pr[|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}[X]}{t^2} \quad \forall t > 0$$

Proof.

- $\Pr[|X - \mathbb{E}[X]| \geq t] = \Pr[|X - \mathbb{E}[X]|^2 \geq t^2]$
- Apply Markov inequality to $|X - \mathbb{E}[X]|^2$:

$$\Pr[|X - \mathbb{E}[X]|^2 \geq t^2] \leq \frac{\mathbb{E}[|X - \mathbb{E}[X]|^2]}{t^2} = \frac{\text{Var}[X]}{t^2}$$

■

Chebyshev Inequality

Let X be a real random variable. Then

$$\Pr[|X - \mathbb{E}[X]| \geq t] \leq \frac{\text{Var}[X]}{t^2} \quad \forall t > 0$$

How to estimate the variance?

- Range bound
- Tensorization of variance

Chebyshev Inequality

Range bound

Let X be a random variable whose support is contained in $[a, b]$. Then

$$\text{Var}[X] \leq \frac{1}{4}(b - a)^2$$

Proof.

- Variational formulation (check by yourself): for *any* random variable X ,

$$\text{Var}[X] = \inf_{\tau} \mathbb{E}[(X - \tau)^2]$$

And the infimum is attained at $\tau = \mathbb{E}[X]$

- Set $\tau = (b + a)/2$. Then we have $|X - \tau| \leq (b - a)/2$

Think: when the range bound is tight

Chebyshev Inequality

Range bound

Let X be a random variable whose support is contained in $[a, b]$. Then

$$\text{Var}[X] \leq \frac{1}{4} (b - a)^2$$

Example:

- Let X_1, \dots, X_n be independent random variables such that $\text{supp}(X_i) \subset [a_i, b_i]$
- Let $Z = X_1 + \dots + X_n$
- By the independence, we know that

$$\text{Var}[Z] = \sum_{i=1}^n \text{Var}[X_i] \leq \frac{1}{4} \sum_{i=1}^n (b_i - a_i)^2 =: \frac{1}{4} \sum_{i=1}^n c_i^2 = \frac{1}{4} \|\mathbf{c}\|_2^2$$

Chebyshev Inequality

Range bound

Let X be a random variable whose support is contained in $[a, b]$. Then

$$\text{Var}[X] \leq \frac{1}{4}(b - a)^2$$

Example:

- Let X_1, \dots, X_n be independent random variables such that $\text{supp}(X_i) \subset [a_i, b_i]$
- Let $Z = X_1 + \dots + X_n$
- On the other hand, it is easy to see that $\text{supp}(Z) \subset [\sum_{i=1}^n a_i, \sum_{i=1}^n b_i]$
- Thus,

$$\text{Var}[Z] \leq \frac{1}{4} \left(\sum_{i=1}^n b_i - \sum_{i=1}^n a_i \right)^2 = \frac{1}{4} \left(\sum_{i=1}^n c_i \right)^2 = \frac{1}{4} \|\mathbf{c}\|_1^2$$

Chebyshev Inequality

Range bound

Let X be a random variable whose support is contained in $[a, b]$. Then

$$\text{Var}[X] \leq \frac{1}{4}(b - a)^2$$

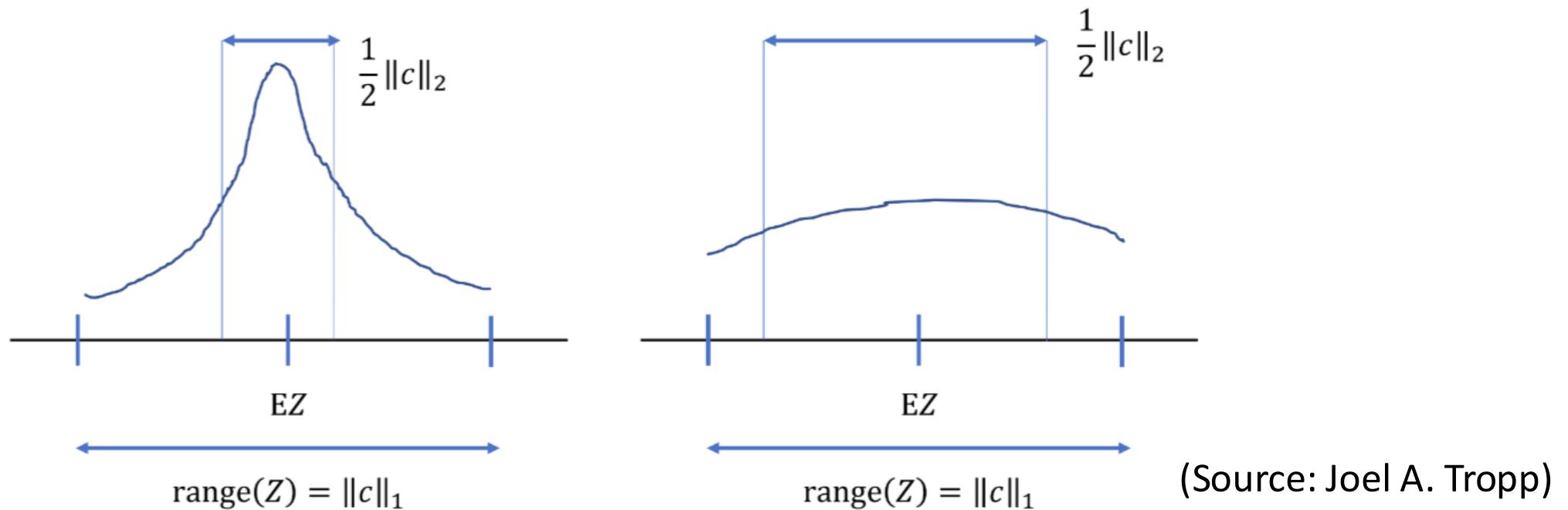
Example:

- Let X_1, \dots, X_n be independent random variables such that $\text{supp}(X_i) \subset [a_i, b_i]$
- Let $Z = X_1 + \dots + X_n$

$$\text{Var}[Z] \leq \frac{1}{4} \min\{\|\mathbf{c}\|_1^2, \|\mathbf{c}\|_2^2\}$$

- Think: when $\|\mathbf{c}\|_2 \ll \|\mathbf{c}\|_1$ and when $\|\mathbf{c}\|_2 \approx \|\mathbf{c}\|_1$

Chebyshev Inequality



“A random variable that depends (in a ‘smooth’ way) on the influence of many independent variables (but not too much on any of them) is essentially constant.”

Michel Talagrand ’96

Chebyshev Inequality

Tensorization

- The motivation comes from the additivity law of variance for independent sum:

$$\text{Var}[Z] = \text{Var}[X_1] + \cdots + \text{Var}[X_n]$$

- What if $Z = f(X_1, \dots, X_n)$ a general function?

Chebyshev Inequality

Tensorization

- We define the **coordinatewise expectation**: for any $i \in [n]$,

$$\mathbb{E}_i[Z] := \mathbb{E}[Z | X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n]$$

Note that $\mathbb{E}_i[Z]$ is a random variable depending on $\{X_j : j \neq i\}$

$$\mathbb{E}_i[Z] \equiv \mathbb{E}_i[Z](X_1, \dots, X_{i-1}, X_{i+1}, \dots, X_n)$$

- We can also define the **coordinatewise variance**: for any $i \in [n]$,

$$\text{Var}_i[Z] := \mathbb{E}_i[(Z - \mathbb{E}_i[Z])^2] = \mathbb{E}_i[Z^2] - \mathbb{E}_i[Z]^2$$

Theorem. Suppose X_1, \dots, X_n are independent random variables. Let $Z = f(X_1, \dots, X_n)$.

$$\text{Var}[Z] \leq \mathbb{E} \left[\sum_{i=1}^n \text{Var}_i[Z] \right]$$

Chebyshev Inequality

Tensorization

Theorem. Suppose X_1, \dots, X_n are independent random variables. Let $Z = f(X_1, \dots, X_n)$.

$$\text{Var}[Z] \leq \mathbb{E} \left[\sum_{i=1}^n \text{Var}_i[Z] \right]$$

- You can check that when $Z = X_1 + \dots + X_n$, $\text{Var}_i[Z] = \text{Var}[X_i]$. The tensorization inequality for variances holds with equality.
- The proof uses Doob's martingale (we'll discuss it later in this course)

$$\mathbb{E}[\text{Var}_i[f(X_1, \dots, X_n)]] = \sum_{x_1} \dots \sum_{x_{i-1}} \sum_{x_{i+1}} \dots \sum_{x_n} \text{Var}[f(x_1, \dots, x_{i-1}, \textcolor{red}{X}_i, x_{i+1}, \dots, x_n)] \prod_{j \neq i} \Pr[X_j = x_j]$$

Chebyshev Inequality

Tensorization

Theorem. Suppose X_1, \dots, X_n are independent random variables. Let $Z = f(X_1, \dots, X_n)$.

$$\text{Var}[Z] \leq \mathbb{E} \left[\sum_{i=1}^n \text{Var}_i[Z] \right]$$

Corollary. For $Z = f(X_1, \dots, X_n)$, define the i -th discrete partial derivative as:

$$(D_i f)(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) := \sup_{z \in \text{supp}(X_i)} f(x_1, \dots, x_{i-1}, z, x_{i+1}, \dots, x_n) - \inf_{z \in \text{supp}(X_i)} f(x_1, \dots, x_{i-1}, z, x_{i+1}, \dots, x_n)$$

Then,

$$\text{Var}[Z] \leq \frac{1}{4} \sum_{i=1}^n \mathbb{E}[(D_i f)^2]$$

Proof.

- Range bound for $\text{Var}_i[Z]$:

$$\text{Var}_i[Z] \leq \frac{1}{4} (D_i f)^2$$

Chebyshev Inequality

Tensorization

Corollary. For $Z = f(X_1, \dots, X_n)$, define the i -th discrete partial derivative as:

$$(D_i f)(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) := \sup_{z \in \text{supp}(X_i)} f(x_1, \dots, x_{i-1}, z, x_{i+1}, \dots, x_n) - \inf_{z \in \text{supp}(X_i)} f(x_1, \dots, x_{i-1}, z, x_{i+1}, \dots, x_n)$$

Then,

$$\text{Var}[Z] \leq \frac{1}{4} \sum_{i=1}^n \mathbb{E}[(D_i f)^2]$$

- Can we further generalize it to **dependent** random variables?
- Related to the Poincaré inequality:

$$\text{Var}[f(\mathbf{X})] \leq C_{\text{PI}} \cdot \mathbb{E}[\|\nabla f(\mathbf{X})\|_2^2]$$